This commit is contained in:
2025-11-14 12:11:44 +08:00
commit 39ebf61572
88 changed files with 9999 additions and 0 deletions

View File

@@ -0,0 +1,28 @@
# [PROJECT NAME] Development Guidelines
Auto-generated from all feature plans. Last updated: [DATE]
## Active Technologies
[EXTRACTED FROM ALL PLAN.MD FILES]
## Project Structure
```text
[ACTUAL STRUCTURE FROM PLANS]
```
## Commands
[ONLY COMMANDS FOR ACTIVE TECHNOLOGIES]
## Code Style
[LANGUAGE-SPECIFIC, ONLY FOR LANGUAGES IN USE]
## Recent Changes
[LAST 3 FEATURES AND WHAT THEY ADDED]
<!-- MANUAL ADDITIONS START -->
<!-- MANUAL ADDITIONS END -->

View File

@@ -0,0 +1,40 @@
# [CHECKLIST TYPE] Checklist: [FEATURE NAME]
**Purpose**: [Brief description of what this checklist covers]
**Created**: [DATE]
**Feature**: [Link to spec.md or relevant documentation]
**Note**: This checklist is generated by the `/speckit.checklist` command based on feature context and requirements.
<!--
============================================================================
IMPORTANT: The checklist items below are SAMPLE ITEMS for illustration only.
The /speckit.checklist command MUST replace these with actual items based on:
- User's specific checklist request
- Feature requirements from spec.md
- Technical context from plan.md
- Implementation details from tasks.md
DO NOT keep these sample items in the generated checklist file.
============================================================================
-->
## [Category 1]
- [ ] CHK001 First checklist item with clear action
- [ ] CHK002 Second checklist item
- [ ] CHK003 Third checklist item
## [Category 2]
- [ ] CHK004 Another category item
- [ ] CHK005 Item with specific criteria
- [ ] CHK006 Final item in this category
## Notes
- Check items off as completed: `[x]`
- Add comments or findings inline
- Link to relevant resources or documentation
- Items are numbered sequentially for easy reference

View File

@@ -0,0 +1,68 @@
# Implementation Plan: [FEATURE]
**Branch**: `[###-feature-name]` | **Date**: [DATE] | **Spec**: [link]
**Input**: Feature specification from `/specs/[###-feature-name]/spec.md`
**Note**: This template is filled in by the `/speckit.plan` command. See `.specify/templates/commands/plan.md` for the execution workflow.
## Summary
[Extract from feature spec: primary requirement + technical approach from research]
## Technical Context
**Language/Version**: Go 1.25+ (静态链接,单二进制交付)
**Primary Dependencies**: Fiber v3HTTP 服务、Viper配置、Logrus + Lumberjack结构化日志 & 滚动)、标准库 `net/http`/`io`
**Storage**: 本地文件系统缓存目录 `StoragePath/<Hub>/<path>` + `.meta` 元数据
**Testing**: `go test ./...`,使用 `httptest`、临时目录和自建上游伪服务验证配置/缓存/代理路径
**Target Platform**: Linux/Unix CLI 进程,由 systemd/supervisor 管理,匿名下游客户端
**Project Type**: 单 Go 项目(`cmd/` 入口 + `internal/*` 包)
**Performance Goals**: 缓存命中直接返回;回源路径需流式转发,单请求常驻内存 <256MB命中/回源日志可追踪
**Constraints**: 禁止 Web UI 或账号体系;所有行为受单一 TOML 配置控制;每个 Hub 需独立 Domain/Port 绑定;仅匿名访问
**Scale/Scope**: 支撑 Docker/NPM/Go/PyPI 等多仓代理,面向弱网及离线缓存复用场景
## Constitution Check
*GATE: Must pass before Phase 0 research. Re-check after Phase 1 design.*
- Feature 仍然是“轻量多仓 CLI 代理”,未引入 Web UI、账号体系或与代理无关的能力。
- 仅使用 Go + 宪法指定依赖;任何新第三方库都已在本计划中说明理由与审核结论。
- 行为完全由 `config.toml` 控制,新增配置项已规划默认值、校验与迁移策略。
- 方案维持缓存优先 + 流式回源路径,并给出命中/回源/失败的日志与观测手段。
- 计划内列出了配置解析、缓存读写、Host Header 路由等强制测试与中文注释交付范围。
## Project Structure
### Documentation (this feature)
```text
specs/[###-feature]/
├── plan.md # This file (/speckit.plan command output)
├── research.md # Phase 0 output (/speckit.plan command)
├── data-model.md # Phase 1 output (/speckit.plan command)
├── quickstart.md # Phase 1 output (/speckit.plan command)
├── contracts/ # Phase 1 output (/speckit.plan command)
└── tasks.md # Phase 2 output (/speckit.tasks command - NOT created by /speckit.plan)
```
### Source Code (repository root)
```text
cmd/any-hub/main.go # CLI 入口、参数解析
internal/config/ # TOML 加载、默认值、校验
internal/server/ # Fiber 服务、路由、中间件
internal/cache/ # 磁盘/内存缓存与 .meta 管理
internal/proxy/ # 上游访问、缓存策略、流式复制
configs/ # 示例 config.toml如需
tests/ # `go test` 下的单元/集成测试,用临时目录
```
**Structure Decision**: 采用单 Go 项目结构,特性代码应放入上述现有目录;如需新增包或目录,必须解释其与 `internal/*` 的关系并给出后续维护策略。
## Complexity Tracking
> **Fill ONLY if Constitution Check has violations that must be justified**
| Violation | Why Needed | Simpler Alternative Rejected Because |
|-----------|------------|-------------------------------------|
| [e.g., 4th project] | [current need] | [why 3 projects insufficient] |
| [e.g., Repository pattern] | [specific problem] | [why direct DB access insufficient] |

View File

@@ -0,0 +1,122 @@
# Feature Specification: [FEATURE NAME]
**Feature Branch**: `[###-feature-name]`
**Created**: [DATE]
**Status**: Draft
**Input**: User description: "$ARGUMENTS"
> 宪法对齐v1.0.0
> - 保持“轻量、匿名、CLI 多仓代理”定位:不得引入 Web UI、账号体系或与代理无关的范围。
> - 方案必须基于 Go 1.25+ 单二进制,依赖仅限 Fiber、Viper、Logrus/Lumberjack 及必要标准库。
> - 所有行为由单一 `config.toml` 控制;若需新配置项,需在规范中说明字段、默认值与迁移策略。
> - 设计需维护缓存优先 + 流式传输路径,并描述命中/回源/失败时的日志与观测需求。
> - 验收必须包含配置解析、缓存读写、Host Header 绑定等测试与中文注释交付约束。
## User Scenarios & Testing *(mandatory)*
<!--
IMPORTANT: User stories should be PRIORITIZED as user journeys ordered by importance.
Each user story/journey must be INDEPENDENTLY TESTABLE - meaning if you implement just ONE of them,
you should still have a viable MVP (Minimum Viable Product) that delivers value.
Assign priorities (P1, P2, P3, etc.) to each story, where P1 is the most critical.
Think of each story as a standalone slice of functionality that can be:
- Developed independently
- Tested independently
- Deployed independently
- Demonstrated to users independently
-->
### User Story 1 - [Brief Title] (Priority: P1)
[Describe this user journey in plain language]
**Why this priority**: [Explain the value and why it has this priority level]
**Independent Test**: [Describe how this can be tested independently - e.g., "Can be fully tested by [specific action] and delivers [specific value]"]
**Acceptance Scenarios**:
1. **Given** [initial state], **When** [action], **Then** [expected outcome]
2. **Given** [initial state], **When** [action], **Then** [expected outcome]
---
### User Story 2 - [Brief Title] (Priority: P2)
[Describe this user journey in plain language]
**Why this priority**: [Explain the value and why it has this priority level]
**Independent Test**: [Describe how this can be tested independently]
**Acceptance Scenarios**:
1. **Given** [initial state], **When** [action], **Then** [expected outcome]
---
### User Story 3 - [Brief Title] (Priority: P3)
[Describe this user journey in plain language]
**Why this priority**: [Explain the value and why it has this priority level]
**Independent Test**: [Describe how this can be tested independently]
**Acceptance Scenarios**:
1. **Given** [initial state], **When** [action], **Then** [expected outcome]
---
[Add more user stories as needed, each with an assigned priority]
### Edge Cases
<!--
ACTION REQUIRED: The content in this section represents placeholders.
Fill them out with the right edge cases.
-->
- What happens when [boundary condition]?
- How does system handle [error scenario]?
## Requirements *(mandatory)*
<!--
ACTION REQUIRED: The content in this section represents placeholders.
Fill them out with the right functional requirements.
-->
### Functional Requirements
- **FR-001**: System MUST [specific capability, e.g., "allow users to create accounts"]
- **FR-002**: System MUST [specific capability, e.g., "validate email addresses"]
- **FR-003**: Users MUST be able to [key interaction, e.g., "reset their password"]
- **FR-004**: System MUST [data requirement, e.g., "persist user preferences"]
- **FR-005**: System MUST [behavior, e.g., "log all security events"]
*Example of marking unclear requirements:*
- **FR-006**: System MUST authenticate users via [NEEDS CLARIFICATION: auth method not specified - email/password, SSO, OAuth?]
- **FR-007**: System MUST retain user data for [NEEDS CLARIFICATION: retention period not specified]
### Key Entities *(include if feature involves data)*
- **[Entity 1]**: [What it represents, key attributes without implementation]
- **[Entity 2]**: [What it represents, relationships to other entities]
## Success Criteria *(mandatory)*
<!--
ACTION REQUIRED: Define measurable success criteria.
These must be technology-agnostic and measurable.
-->
### Measurable Outcomes
- **SC-001**: [Measurable metric, e.g., "Users can complete account creation in under 2 minutes"]
- **SC-002**: [Measurable metric, e.g., "System handles 1000 concurrent users without degradation"]
- **SC-003**: [User satisfaction metric, e.g., "90% of users successfully complete primary task on first attempt"]
- **SC-004**: [Business metric, e.g., "Reduce support tickets related to [X] by 50%"]

View File

@@ -0,0 +1,258 @@
---
description: "Task list template for feature implementation"
---
# Tasks: [FEATURE NAME]
**Input**: Design documents from `/specs/[###-feature-name]/`
**Prerequisites**: plan.md (required), spec.md (required for user stories), research.md, data-model.md, contracts/
**Tests**: The examples below include test tasks. 测试仅在需求或宪法要求时可省略;宪法 v1.0.0 强制覆盖配置解析、缓存读写、代理命中/回源与 Host Header 绑定逻辑。
**Organization**: Tasks are grouped by user story to enable independent implementation and testing of each story.
## Format: `[ID] [P?] [Story] Description`
- **[P]**: Can run in parallel (different files, no dependencies)
- **[Story]**: Which user story this task belongs to (e.g., US1, US2, US3)
- Include exact file paths in descriptions
## 宪法任务(强制)
- Always include至少一个配置相关任务`internal/config`):新增字段、默认值、验证、示例 `config.toml`
- 至少一个缓存/代理任务需描述 `internal/cache``internal/proxy` 的修改及流式回源策略。
- 记录观测性任务:结构化日志字段、命中/回源指标或健康检查。
- 说明中文注释与文档更新(例如 `DEVELOPMENT.md`)的位置,确保知识可传递。
## Path Conventions
- **Single project**: `src/`, `tests/` at repository root
- **Web app**: `backend/src/`, `frontend/src/`
- **Mobile**: `api/src/`, `ios/src/` or `android/src/`
- Paths shown below assume single project - adjust based on plan.md structure
<!--
============================================================================
IMPORTANT: The tasks below are SAMPLE TASKS for illustration purposes only.
The /speckit.tasks command MUST replace these with actual tasks based on:
- User stories from spec.md (with their priorities P1, P2, P3...)
- Feature requirements from plan.md
- Entities from data-model.md
- Endpoints from contracts/
Tasks MUST be organized by user story so each story can be:
- Implemented independently
- Tested independently
- Delivered as an MVP increment
DO NOT keep these sample tasks in the generated tasks.md file.
============================================================================
-->
## Phase 1: Setup (Shared Infrastructure)
**Purpose**: Project initialization and basic structure
- [ ] T001 Create project structure per implementation plan
- [ ] T002 Initialize [language] project with [framework] dependencies
- [ ] T003 [P] Configure linting and formatting tools
---
## Phase 2: Foundational (Blocking Prerequisites)
**Purpose**: Core infrastructure that MUST be complete before ANY user story can be implemented
**⚠️ CRITICAL**: No user story work can begin until this phase is complete
Examples of foundational tasks (adjust based on your project):
- [ ] T004 Setup database schema and migrations framework
- [ ] T005 [P] Implement authentication/authorization framework
- [ ] T006 [P] Setup API routing and middleware structure
- [ ] T007 Create base models/entities that all stories depend on
- [ ] T008 Configure error handling and logging infrastructure
- [ ] T009 Setup environment configuration management
**Checkpoint**: Foundation ready - user story implementation can now begin in parallel
---
## Phase 3: User Story 1 - [Title] (Priority: P1) 🎯 MVP
**Goal**: [Brief description of what this story delivers]
**Independent Test**: [How to verify this story works on its own]
### Tests for User Story 1 (OPTIONAL - only if tests requested) ⚠️
> **NOTE: Write these tests FIRST, ensure they FAIL before implementation**
- [ ] T010 [P] [US1] Contract test for [endpoint] in tests/contract/test_[name].py
- [ ] T011 [P] [US1] Integration test for [user journey] in tests/integration/test_[name].py
### Implementation for User Story 1
- [ ] T012 [P] [US1] Create [Entity1] model in src/models/[entity1].py
- [ ] T013 [P] [US1] Create [Entity2] model in src/models/[entity2].py
- [ ] T014 [US1] Implement [Service] in src/services/[service].py (depends on T012, T013)
- [ ] T015 [US1] Implement [endpoint/feature] in src/[location]/[file].py
- [ ] T016 [US1] Add validation and error handling
- [ ] T017 [US1] Add logging for user story 1 operations
**Checkpoint**: At this point, User Story 1 should be fully functional and testable independently
---
## Phase 4: User Story 2 - [Title] (Priority: P2)
**Goal**: [Brief description of what this story delivers]
**Independent Test**: [How to verify this story works on its own]
### Tests for User Story 2 (OPTIONAL - only if tests requested) ⚠️
- [ ] T018 [P] [US2] Contract test for [endpoint] in tests/contract/test_[name].py
- [ ] T019 [P] [US2] Integration test for [user journey] in tests/integration/test_[name].py
### Implementation for User Story 2
- [ ] T020 [P] [US2] Create [Entity] model in src/models/[entity].py
- [ ] T021 [US2] Implement [Service] in src/services/[service].py
- [ ] T022 [US2] Implement [endpoint/feature] in src/[location]/[file].py
- [ ] T023 [US2] Integrate with User Story 1 components (if needed)
**Checkpoint**: At this point, User Stories 1 AND 2 should both work independently
---
## Phase 5: User Story 3 - [Title] (Priority: P3)
**Goal**: [Brief description of what this story delivers]
**Independent Test**: [How to verify this story works on its own]
### Tests for User Story 3 (OPTIONAL - only if tests requested) ⚠️
- [ ] T024 [P] [US3] Contract test for [endpoint] in tests/contract/test_[name].py
- [ ] T025 [P] [US3] Integration test for [user journey] in tests/integration/test_[name].py
### Implementation for User Story 3
- [ ] T026 [P] [US3] Create [Entity] model in src/models/[entity].py
- [ ] T027 [US3] Implement [Service] in src/services/[service].py
- [ ] T028 [US3] Implement [endpoint/feature] in src/[location]/[file].py
**Checkpoint**: All user stories should now be independently functional
---
[Add more user story phases as needed, following the same pattern]
---
## Phase N: Polish & Cross-Cutting Concerns
**Purpose**: Improvements that affect multiple user stories
- [ ] TXXX [P] Documentation updates in docs/
- [ ] TXXX Code cleanup and refactoring
- [ ] TXXX Performance optimization across all stories
- [ ] TXXX [P] Additional unit tests (if requested) in tests/unit/
- [ ] TXXX Security hardening
- [ ] TXXX Run quickstart.md validation
---
## Dependencies & Execution Order
### Phase Dependencies
- **Setup (Phase 1)**: No dependencies - can start immediately
- **Foundational (Phase 2)**: Depends on Setup completion - BLOCKS all user stories
- **User Stories (Phase 3+)**: All depend on Foundational phase completion
- User stories can then proceed in parallel (if staffed)
- Or sequentially in priority order (P1 → P2 → P3)
- **Polish (Final Phase)**: Depends on all desired user stories being complete
### User Story Dependencies
- **User Story 1 (P1)**: Can start after Foundational (Phase 2) - No dependencies on other stories
- **User Story 2 (P2)**: Can start after Foundational (Phase 2) - May integrate with US1 but should be independently testable
- **User Story 3 (P3)**: Can start after Foundational (Phase 2) - May integrate with US1/US2 but should be independently testable
### Within Each User Story
- Tests (if included) MUST be written and FAIL before implementation
- Models before services
- Services before endpoints
- Core implementation before integration
- Story complete before moving to next priority
### Parallel Opportunities
- All Setup tasks marked [P] can run in parallel
- All Foundational tasks marked [P] can run in parallel (within Phase 2)
- Once Foundational phase completes, all user stories can start in parallel (if team capacity allows)
- All tests for a user story marked [P] can run in parallel
- Models within a story marked [P] can run in parallel
- Different user stories can be worked on in parallel by different team members
---
## Parallel Example: User Story 1
```bash
# Launch all tests for User Story 1 together (if tests requested):
Task: "Contract test for [endpoint] in tests/contract/test_[name].py"
Task: "Integration test for [user journey] in tests/integration/test_[name].py"
# Launch all models for User Story 1 together:
Task: "Create [Entity1] model in src/models/[entity1].py"
Task: "Create [Entity2] model in src/models/[entity2].py"
```
---
## Implementation Strategy
### MVP First (User Story 1 Only)
1. Complete Phase 1: Setup
2. Complete Phase 2: Foundational (CRITICAL - blocks all stories)
3. Complete Phase 3: User Story 1
4. **STOP and VALIDATE**: Test User Story 1 independently
5. Deploy/demo if ready
### Incremental Delivery
1. Complete Setup + Foundational → Foundation ready
2. Add User Story 1 → Test independently → Deploy/Demo (MVP!)
3. Add User Story 2 → Test independently → Deploy/Demo
4. Add User Story 3 → Test independently → Deploy/Demo
5. Each story adds value without breaking previous stories
### Parallel Team Strategy
With multiple developers:
1. Team completes Setup + Foundational together
2. Once Foundational is done:
- Developer A: User Story 1
- Developer B: User Story 2
- Developer C: User Story 3
3. Stories complete and integrate independently
---
## Notes
- [P] tasks = different files, no dependencies
- [Story] label maps task to specific user story for traceability
- Each user story should be independently completable and testable
- Verify tests fail before implementing
- Commit after each task or logical group
- Stop at any checkpoint to validate story independently
- Avoid: vague tasks, same file conflicts, cross-story dependencies that break independence