feat: implement AI-assisted rename prompting feature

- Added data model for AI-assisted renaming including structures for prompts, responses, and policies.
- Created implementation plan detailing the integration of Google Genkit into the CLI for renaming tasks.
- Developed quickstart guide for setting up and using the new AI rename functionality.
- Documented research decisions regarding Genkit orchestration and prompt composition.
- Established tasks for phased implementation, including setup, foundational work, and user stories.
- Implemented contract tests to ensure AI rename policies and ledger metadata are correctly applied.
- Developed integration tests for validating AI rename flows, including preview, apply, and undo functionalities.
- Added tooling to pin Genkit dependency for consistent builds.
This commit is contained in:
2025-11-03 18:08:14 +08:00
parent aa377bc7ed
commit 3867736858
41 changed files with 4082 additions and 9 deletions

View File

@@ -0,0 +1,158 @@
package genkit
import (
"context"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"fmt"
"strings"
"sync"
genaigo "github.com/firebase/genkit/go/ai"
"github.com/openai/openai-go/option"
aiconfig "github.com/rogeecn/renamer/internal/ai/config"
"github.com/rogeecn/renamer/internal/ai/prompt"
)
// WorkflowRunner executes a Genkit request and returns the structured response.
type WorkflowRunner interface {
Run(ctx context.Context, req Request) (Result, error)
}
// WorkflowFactory constructs workflow runners.
type WorkflowFactory func(ctx context.Context, opts Options) (WorkflowRunner, error)
var (
factoryMu sync.RWMutex
defaultFactory = func(ctx context.Context, opts Options) (WorkflowRunner, error) {
return NewWorkflow(ctx, opts)
}
currentFactory WorkflowFactory = defaultFactory
)
// OverrideWorkflowFactory allows tests to supply custom workflow implementations.
func OverrideWorkflowFactory(factory WorkflowFactory) {
factoryMu.Lock()
defer factoryMu.Unlock()
if factory == nil {
currentFactory = defaultFactory
return
}
currentFactory = factory
}
// ResetWorkflowFactory restores the default workflow constructor.
func ResetWorkflowFactory() {
OverrideWorkflowFactory(nil)
}
func getWorkflowFactory() WorkflowFactory {
factoryMu.RLock()
defer factoryMu.RUnlock()
return currentFactory
}
// ClientOptions configure the Genkit client.
type ClientOptions struct {
Model string
TokenProvider aiconfig.TokenProvider
RequestOptions []option.RequestOption
}
// Client orchestrates prompt execution against the configured workflow.
type Client struct {
model string
tokenProvider aiconfig.TokenProvider
requestOptions []option.RequestOption
}
// NewClient constructs a client with optional overrides.
func NewClient(opts ClientOptions) *Client {
model := strings.TrimSpace(opts.Model)
if model == "" {
model = DefaultModelName
}
return &Client{
model: model,
tokenProvider: opts.TokenProvider,
requestOptions: append([]option.RequestOption(nil), opts.RequestOptions...),
}
}
// Invocation describes a single Genkit call.
type Invocation struct {
Instructions string
Prompt prompt.RenamePrompt
Model string
}
// InvocationResult carries the parsed response alongside telemetry.
type InvocationResult struct {
PromptHash string
Model string
Response prompt.RenameResponse
ModelResponse *genaigo.ModelResponse
PromptJSON []byte
}
// Invoke executes the workflow and returns the structured response.
func (c *Client) Invoke(ctx context.Context, inv Invocation) (InvocationResult, error) {
model := strings.TrimSpace(inv.Model)
if model == "" {
model = c.model
}
if model == "" {
model = DefaultModelName
}
payload, err := json.Marshal(inv.Prompt)
if err != nil {
return InvocationResult{}, fmt.Errorf("marshal prompt payload: %w", err)
}
factory := getWorkflowFactory()
runner, err := factory(ctx, Options{
Model: model,
TokenProvider: c.tokenProvider,
RequestOptions: c.requestOptions,
})
if err != nil {
return InvocationResult{}, err
}
result, err := runner.Run(ctx, Request{
Instructions: inv.Instructions,
Payload: inv.Prompt,
})
if err != nil {
return InvocationResult{}, err
}
if strings.TrimSpace(result.Response.Model) == "" {
result.Response.Model = model
}
promptHash := hashPrompt(inv.Instructions, payload)
if strings.TrimSpace(result.Response.PromptHash) == "" {
result.Response.PromptHash = promptHash
}
return InvocationResult{
PromptHash: promptHash,
Model: result.Response.Model,
Response: result.Response,
ModelResponse: result.ModelResponse,
PromptJSON: payload,
}, nil
}
func hashPrompt(instructions string, payload []byte) string {
hasher := sha256.New()
hasher.Write([]byte(strings.TrimSpace(instructions)))
hasher.Write([]byte{'\n'})
hasher.Write(payload)
sum := hasher.Sum(nil)
return hex.EncodeToString(sum)
}

View File

@@ -0,0 +1,3 @@
package genkit
// Package genkit integrates the Google Genkit workflow with the CLI.

View File

@@ -0,0 +1,166 @@
package genkit
import (
"context"
"encoding/json"
"errors"
"fmt"
"os"
"strings"
"github.com/firebase/genkit/go/ai"
gogenkit "github.com/firebase/genkit/go/genkit"
oai "github.com/firebase/genkit/go/plugins/compat_oai/openai"
"github.com/openai/openai-go/option"
aiconfig "github.com/rogeecn/renamer/internal/ai/config"
"github.com/rogeecn/renamer/internal/ai/prompt"
)
const (
defaultModelName = "gpt-4o-mini"
// DefaultModelName exposes the default model identifier used by the CLI.
DefaultModelName = defaultModelName
)
var (
// ErrMissingToken indicates the workflow could not locate a model token.
ErrMissingToken = errors.New("genkit workflow: model token not available")
// ErrMissingInstructions indicates that no system instructions were provided for a run.
ErrMissingInstructions = errors.New("genkit workflow: instructions are required")
)
// DataGenerator executes the Genkit request and decodes the structured response.
type DataGenerator func(ctx context.Context, g *gogenkit.Genkit, opts ...ai.GenerateOption) (*prompt.RenameResponse, *ai.ModelResponse, error)
// Options configure a Workflow instance.
type Options struct {
Model string
TokenProvider aiconfig.TokenProvider
RequestOptions []option.RequestOption
Generator DataGenerator
}
// Request captures the input necessary to execute the Genkit workflow.
type Request struct {
Instructions string
Payload prompt.RenamePrompt
}
// Result bundles the typed response together with the raw Genkit metadata.
type Result struct {
Response prompt.RenameResponse
ModelResponse *ai.ModelResponse
}
// Workflow orchestrates execution of the Genkit rename pipeline.
type Workflow struct {
modelName string
genkit *gogenkit.Genkit
model ai.Model
generate DataGenerator
}
// NewWorkflow instantiates a Genkit workflow for the preferred model. When no
// model is provided it defaults to gpt-4o-mini. The workflow requires a token
// provider capable of resolving `<model>_MODEL_AUTH_TOKEN` secrets.
func NewWorkflow(ctx context.Context, opts Options) (*Workflow, error) {
modelName := strings.TrimSpace(opts.Model)
if modelName == "" {
modelName = defaultModelName
}
token, err := resolveToken(opts.TokenProvider, modelName)
if err != nil {
return nil, err
}
if strings.TrimSpace(token) == "" {
return nil, fmt.Errorf("%w for %q", ErrMissingToken, modelName)
}
plugin := &oai.OpenAI{
APIKey: token,
Opts: opts.RequestOptions,
}
g := gogenkit.Init(ctx, gogenkit.WithPlugins(plugin))
model := plugin.Model(g, modelName)
generator := opts.Generator
if generator == nil {
generator = func(ctx context.Context, g *gogenkit.Genkit, opts ...ai.GenerateOption) (*prompt.RenameResponse, *ai.ModelResponse, error) {
return gogenkit.GenerateData[prompt.RenameResponse](ctx, g, opts...)
}
}
return &Workflow{
modelName: modelName,
genkit: g,
model: model,
generate: generator,
}, nil
}
// Run executes the workflow with the provided request and decodes the response
// into the shared RenameResponse structure.
func (w *Workflow) Run(ctx context.Context, req Request) (Result, error) {
if w == nil {
return Result{}, errors.New("genkit workflow: nil receiver")
}
if strings.TrimSpace(req.Instructions) == "" {
return Result{}, ErrMissingInstructions
}
payload, err := json.Marshal(req.Payload)
if err != nil {
return Result{}, fmt.Errorf("marshal workflow payload: %w", err)
}
options := []ai.GenerateOption{
ai.WithModel(w.model),
ai.WithSystem(req.Instructions),
ai.WithPrompt(string(payload)),
}
response, raw, err := w.generate(ctx, w.genkit, options...)
if err != nil {
return Result{}, fmt.Errorf("genkit generate: %w", err)
}
return Result{
Response: deref(response),
ModelResponse: raw,
}, nil
}
func resolveToken(provider aiconfig.TokenProvider, model string) (string, error) {
if provider != nil {
if token, err := provider.ResolveModelToken(model); err == nil && strings.TrimSpace(token) != "" {
return token, nil
} else if err != nil {
return "", fmt.Errorf("resolve model token: %w", err)
}
}
if direct := strings.TrimSpace(os.Getenv(aiconfig.ModelTokenKey(model))); direct != "" {
return direct, nil
}
store, err := aiconfig.NewTokenStore("")
if err != nil {
return "", err
}
token, err := store.ResolveModelToken(model)
if err != nil {
return "", err
}
return token, nil
}
func deref(resp *prompt.RenameResponse) prompt.RenameResponse {
if resp == nil {
return prompt.RenameResponse{}
}
return *resp
}